Apply Now Clicking "Apply Now" opens the link in a new window.

How to Apply

A cover letter is required for consideration for this position and should be included as the first page of your CV.  The cover letter should outline your specific interest in the position and outline skills and experience that directly relates to this position.   Please apply online at https://umjobs.org/, job opening number 153763.

Job Summary

A generously funded project (2016-2021) welcomes applicants with interest in and expertise in automated text analysis. The project, M-Write, brings together researchers from writing studies, the natural sciences, and computer programming to investigate how Writing-to-Learn pedagogies promote conceptual learning by students in large-enrollment gateway courses. Students write in response to carefully crafted assignments, participate in automated peer review, and then revise their drafts. Approximately 10,000 students have already participated in M-Write courses, which means that there is already a large corpus of student writing and peer review responses, with more being added each semester. We seek a specialist in automated text analysis to join the research team.  Goals include principled corpus compilation, analysis, and development of corpus-driven algorithms to support student learning of key concepts highlighted in assignments.

This position will be a 12-month Post-Doctoral Fellowship beginning in June 2018 with possibility of renewal. The salary is negotiable.

Responsibilities*

  • Retrieve and create corpora for NLP and associated linguistic analysis
  • Develop and test systems for identifying students who appear to lack key concepts as defined by lexical and grammatical structures, discourse analysis, and possible sentiment analysis
  • Design a data warehouse that will facilitate the ability to collect, manage, and archive data including student interviews, student surveys, student writing samples, and academic and demographic data for students in order to conduct research leading to peer-reviewed publications, and future external funding
  • In collaboration with other project staff collect, manage, and archive data including student interviews, student surveys, student writing samples, and  academic and demographic data for students in order to conduct research that could lead to peer-reviewed publications
  • Organize, synthesize, and analyze project data, and write co-authored papers with project PIs for peer-reviewed articles

Required Qualifications*

Ph.D. in computational linguistics, natural language processing, machine learning, cognitive linguistics, sentiment analysis or related area. Previous research experience in textual analysis in terms of syntax (e.g. parts of speech tagging), semantics (e.g. topic segmentation) and discourse analysis is essential. Research in statistical modeling is also required.  Strong computer science skills are essential, and data warehouse design skills are highly desired. Background in the theory and research of writing-to-learn pedagogies and experience with educational technology in natural language processing are desired but not required.

Background Screening

The University of Michigan conducts background checks on all job candidates upon acceptance of a contingent offer and may use a third party administrator to conduct background checks. Background checks will be performed in compliance with the Fair Credit Reporting Act.

U-M EEO/AA Statement

The University of Michigan is an equal opportunity/affirmative action employer.